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KKEEYYWWOORRDDSS                                  ABSTRACT 
 

 

The traveling salesman problem is a well-known and important 

combinatorial optimization problem. The goal of this problem is to find 

the shortest Hamiltonian path that visits each city in a given list 

exactly once and then returns to the starting city. In this paper, for the 

first time, the shortest Hamiltonian path is achieved for 1071 Iranian 

cities. For solving this large-scale problem, two hybrid efficient and 

effective metaheuristic algorithms are developed. The simulated 

annealing and ant colony optimization algorithms are combined with 

the local search methods. To evaluate the proposed algorithms, the 

standard problems with different sizes are used. The algorithms 

parameters are tuned by design of experiments approach and the most 

appropriate values for the parameters are adjusted. The performance 

of the proposed algorithms is analyzed by quality of solution and CPU 

time measures. The results show high efficiency and effectiveness of the 

proposed algorithms. 
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11..  IInnttrroodduuccttiioonn
∗∗∗∗
  

The Traveling Salesman Problem (TSP) is a well 

known and important combinatorial optimization 

problem. The goal of this problem is to find the 

shortest path that visits each city in a given list exactly 

once and then returns to the starting city. The distances 

between n cities are stored in a distance matrix D with 

elements dij where i, j = 1, 2, ..., n and the diagonal 

elements dij are zero [1]. In the 1920’s, the 

mathematician and economist Menger publicized this 

problem among his colleagues in Vienna. In the 1930’s 

the problem reappeared in the mathematical circles of 

Princeton [2]. In the 1940’s, mathematician Flood 

publicized the name, TSP, within the mathematical 

community at mass [3].  

Despite this simple problem statement, solving the TSP 

is difficult, since it belongs to the class of NP-complete 
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problems [4]. Different instances of the TSP are 

divided into different classes based on the arrangement 

of distance between the cities or the type of graph in 

concern. In the symmetric TSP, the distance between 

two cities is the same in each direction, forming an 

undirected graph. The importance of the TSP arises 

besides from its theoretical appeal from the variety of 

its applications.  

Typical applications in operations research include 

vehicle routing, computer wiring, cutting wallpaper, 

job sequencing, and job scheduling. Recognizing 

methods to solve TSP and find the appropriate method 

is one of the important research areas [1] and [5]. Due 

to differences between metaheuristics algorithms, 

Simulated Annealing (SA) algorithm as a single-

solution-based algorithm and Ant Colony Optimization 

(ACO) algorithm as a population-based-algorithm are 

used to find the shortest Hamiltonian path between 

1071 Iranian cities. The algorithms parameters are 

tuned by Design of Experiments (DOE) approach and 

the most appropriate values for the parameters are 

adjusted. To evaluate the accuracy and efficiency of 

Iranian cities,  
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the proposed algorithms, standard problems with size 

from 16 to 1060 cities are used. The paper is organized 

as follows. In section two, literature review is 

conducted. In the third section, the proposed hybrid SA 

and ACO algorithm are presented. In the fourth 

section, parameters tuning, and in the fifth section the 

result of the proposed algorithms are discussed. In 

section six, the statistical analysis is presented. The 

shortest Hamiltonian path between Iranian cities is 

derived by using the proposed algorithms in section 

seven. Conclusions are presented in section eight. 

 
2. Literature Review 

The TSP problem has different types, such as 

Probabilistic Traveling Salesman Problem (PTSP), 

Traveling Salesman Problem with Time Windows 

(TSPTW), Multicommodity Traveling Salesman 

Problem (MTSP), and Railway Traveling Salesman 

Problem (RTSP). The PTSP is a topic of theoretical 

and practical importance in the study of stochastic 

network problems. It provides researchers with a 

modeling framework for exploring the stochastic 

effects in routing problems. Designing effective 

algorithms for stochastic routing problems is a difficult 

task. This is due to the element of uncertainty in the 

data, which increases the difficulty of finding an 

optimal solution in a large search space [6] and [7]. 

The TSPTW involves finding the minimum cost tour in 

which all cities are visited exactly once within their 

requested time windows. This problem has a number of 

important practical applications including scheduling 

and routing [8].  

The MTSP presents a more general cost structure, 

allowing for solutions that consider the quality of 

service to the customers, delivery priorities and 

delivery risk, among other possible objectives. In the 

MTSP, the salesman pays the traditional TSP fixed 

cost for each arc visited, plus a variable cost for each of 

the commodities being transported across the network 

[9] and [10]. The RTSP in which a salesman using the 

railway network to visit a certain number of stations to 

carry out business, starting and ending at the same 

station, and having as goal to minimize the overall time  

of the journey. It is related to the Generalized 

Asymmetric Traveling Salesman Problem (GATSP) 

[11], [12], [13], and [14]. TSP solution methods can be 

divided into two groups including exact methods and 

approximation methods. Although exact algorithms 

exist for solving the TSP, like enumeration method, 

branch and bound and dynamic programming but it has 

been proved that for large-size TSP, it is almost 

impossible to generate an optimal solution within a 

reasonable amount of time. Exact techniques can solve 

only small instances to optimality.  

The approximation methods are classified into 

metaheuristic and heuristic techniques. Metaheuristics, 

instead of exact algorithms, are extensively used to 

solve such problems [15]. For constructing and 

improving initial solutions in metaheuristics, the 

heuristic methods such as nearest neighbor, 2-opt, and 

3-opt methods can be used [16]. Attempts to solve the 

TSP were futile until the mid-1950’s when Dantzig et 

al. [17] and [18] presented a method for solving the 

TSP. They showed the effectiveness of their method by 

solving a 49-city instance. Radharamanan (1986) 

developed a branch and bound model with penalty tour 

building for solving TSP and transportation routing 

problems [19]. Pop et al. (2008) used a cutting plane 

approach to solve the railway travelling salesman 

problem [20]. Sarubbi et al. (2008) presented a branch 

and cut algorithm for the MTSP [11]. Zamani and Lau 

(2010) presented an effective procedure that finds 

lower bounds for the travelling salesman problem 

based on the 1-tree using a learning-based Lagrangian 

relaxation technique [21].  

Following, the metaheuristic methods for solving TSP 

are reviewed. Cheng and Gen (1994) described a new 

crossover operator for the TSP problem, the greedy 

selection crossover operator, which is designed for path 

representation and performed at gene level. It can 

utilize local precedence and global precedence 

relationship between genes to perform intensive search 

among solution space to reproduce an improved 

offspring [22]. Moon et al. (2002) used an efficient 

genetic algorithm to solve the TSP with precedence 

constraints.  

The key concept of the proposed algorithm is a 

topological sort, which is defined as an ordering of 

vertices in a directed graph [23]. Bontoux et al. (2009) 

solved the GTSP by using memetic algorithm. In this 

problem, the set of cities is divided into mutually 

exclusive clusters. The objective of the GTSP consists 

in visiting each cluster exactly once in a tour, while 

minimizing the sum of the routing costs [24] and [25]. 

Balaprakash (2009) customized two metaheuristics, an 

iterated local search algorithm and a Memetic 

algorithm to solve the PTSP [26]. Liu (2010) proposed 

three initial solution generators under a genetic 

algorithm framework for solving the PTSP. This paper 

used a set of numerical experiments based on 

heterogeneous and homogeneous PTSP instances to 

test the effectiveness and efficiency of the proposed 

algorithms [27].  

Marinakis et al. (2010) proposed a new hybrid 

algorithmic nature inspired approach based on Particle 

Swarm Optimization (PSO), Greedy Randomized 

Adaptive Search Procedure (GRASP), and Expanding 

Neighborhood Search (ENS) strategy for the solution 

of the PTSP [28]. Li et al. (2008) presented an 

improved ant colony optimization algorithm for 

traveling salesman problem, which adopts a new 

probability selection mechanism by using Held-Karp 

lower bound to determine the trade-off between the 

influence of the heuristic information and the 

pheromone trail [29]. The ant colony optimization 

algorithm usually falls into local optimal solution and 

cannot select the path with high pheromone 
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concentration quickly in solving the TSP. Tiankun et 

al. (2009) proposed an improved MAX-MIN Ant 

System (MMAS) algorithm based on pheromone 

concentration reinitialization to overcome this problem 

[30]. Zhang (2009) presented a paper that is a survey of 

natural computation for the traveling salesman problem 

[31]. The work of Ghoseari and Sarhadi (2009) is 

similar to this paper. They tried to find the shortest 

Hamiltonian path for 360 Iranian cities using ant 

colony optimization algorithm [32]. The weaknesses of 

their work are: (1) they did not use the standard 

problems to evaluate their algorithm, (2) the parameter 

tuning method was not an appropriate approach, and 

(3) the solving CPU time (5523 seconds) was very 

long. In our paper, the number of cities is increase to 

1071 cities, the design of experiments approach is used 

for parameter tuning, the standard problems with 

different dimensions are used to evaluate the proposed 

algorithms, and the solving CPU time is decreased 

dramatically. 

 
3. The Proposed Algorithms 

3.1. The Simulated Annealing Algorithm 

Simulated annealing algorithm has been 

introduced in 1983 by Kirkpatrick et. al [33]. This 

memoryless metaheuristic is base on Metropolis 

algorithm and prevents remaining in the local optimal 

with the transition towards low quality solution. The 

SA algorithm, which is a single-solution-based 

metaheuristic, has very high ability to be combined 

with a heuristic algorithm.  

The components of the proposed SA algorithm are 

solution representation, initial solution, neighbourhood 

structure, initial temperature, cooling schedule, and 

termination criteria. 

To represent solution, an array that its length is the 

number of cities is used. In each element of this array, 

the number of a specific city is stored (Fig. 1). Finally, 

the sequence of cities that located in this array is 

indicating the constructed path. To create the initial 

solution, a nearest neighbor heuristic method is used. 

Using this algorithm leads to create appropriate initial 

solution and speed up the trend of algorithm toward the 

optimal solution. 
 

 

 

 

 

 

 
Fig. 1. Solution representation 

 
One of the main components of the SA algorithm is 

neighborhood structure. Common methods such as 

inversion, insertion, and swap are not suitable for 

large-scale problems [34]. Therefore, to solve such 

problems using local search is appropriate. In this way, 

for every move, several cities selected randomly and 

replacement with a determined number of nearest cities 

are reviewed. Ultimately, the best city is selected to 

substitute.  

This approach leads to better solution quality and 

reduce CPU time to reach the best solution [35] and 

[36]. Initial temperature has a large influence on the 

performance of the proposed algorithm. High initial 

temperature leads to low performance and running time 

of algorithm is increased. Low initial temperature does 

not search solution space well and it cannot escape 

from local optimal. In parameters tuning, the 

appropriate amount of the initial temperature is 

adjusted. In the proposed algorithm for cooling 

schedule, the linear and geometric methods are used. In 

parameters tuning section, with considering the quality 

of solution, an appropriate function is selected for 

reducing temperature. In the proposed algorithm, the 

number of iterations without improvement and the final 

temperature are considered as termination conditions. 

In the parameter setting, the type of termination 

condition is determined. Fig. 2 displays pseudocode for 

the proposed SA algorithm. 

 

 
Fig. 2. Pseudo code for the proposed SA algorithm 

to find shortest Hamiltonian path 

 
3.2. The Proposed Ant Colony Optimization 

Algorithm  
Dorigo proposed a common framework for the 

applications and algorithmic variants of a variety of ant 

Pseudocode for the proposed Simulated Annealing 

Algorithm 

 

Read data 

Let currentTour = initial feasible solution by nearest 

neighbor heuristic method 

Let currentTourLength= current tour length 

Let bestSoFarTour= currentTourLength 

Let bestSoFarTourLength= currentTourLength 

While (stopping criterion not met) 

    Let neighbourTour= best neighbourhood of current 

solution 

    randomNumber= random number (0,1) 

    ∆C = neighbourTourLength - currentTourLength 

    If (
-

e > 
C

initialTemprature randomNumber
∆

 ) Then 

        Let currentTour= neighbourTour 

        Let currentTourLength= neighbourTourLength 

    End If 

    If (currentTourLength <  bestSoFarTourLength) Then  

        bestSoFarTourLength= currentTourLength 

        bestSoFarTour= currentTour 

    End If 

    initialTemprature= Apply cooling function 

End While 

Output bestSoFarTourLength 
 

End. 
City number 

  

Number of cities 
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algorithms. Algorithms that fit into the Ant Colony 

Optimization (ACO) metaheuristic framework called in 

the following ACO algorithms [37] and [38].  

The ACO is inspired by the foraging behavior of ant 

colonies. The ACO is a population-based algorithm, 

which is a powerful algorithm for solving 

combinatorial problems. One of the ACO algorithms is 

Ant Colony System (ACS) in which, pheromone 

evaporation is interleaved with tour construction [39] 

and [40].  

In this paper ASC algorithm combined with local 

search method. The components of proposed ACO 

algorithm are solution representation, initial 

pheromone value, number of ants, q0, α , β, the local 

evaporation coefficient ζ, public evaporation 

coefficient ρ, and the termination condition [38]. A 

first implementation of an ACO algorithm can be quite 

straightforward.  

In fact, if a greedy construction procedure like a 

nearest-neighbour heuristic is available, one can use as 

a construction graph. The same graph used by the 

construction procedure, and then it is only necessary to 

add pheromone trail variables to the construction graph 

and define the set of artificial ants.  

If the initial pheromone values are too low, then the 

search is quickly biased by the first tours generated by 

the ants, which in general leads toward the exploration 

of inferior zones of the search space. On the other side, 

if the initial pheromone values are too high, then many 

iterations are lost waiting until pheromone evaporation 

reduces enough pheromone values, so that pheromone 

added by ants can start to bias the search. In order to 

have an efficient implementation, often additional data 

structures are required, like arrays to store information 

which, although redundant, make the processing much 

faster e.g. candidate list.  

The parameter ρ is used to avoid unlimited 

accumulation of the pheromone trails and it enables the 

algorithm to forget bad decisions previously taken. The 

heuristic value is used by the ants’ heuristic rule to 

make probabilistic decisions on how to move on the 

graph. α and β are two parameters which determine the 

relative influence of the pheromone trail and the 

heuristic information. With probability q0 the ant 

makes the best possible move as indicated by the 

learned pheromone trails and the heuristic information 

(in this case, the ant is exploiting the learned 

knowledge); while with probability (1- q0) it performs 

a biased exploration of the arcs. In the proposed 

algorithm only one ant (the best-so-far ant) is allowed 

to add pheromone after each iteration. In addition to 

the global pheromone trail updating rule, in this 

algorithm the ants use a local pheromone update rule 

that they apply immediately after having crossed an 

arc. In fact, the best trade-off between solution quality 

and computation time seems to be obtained when using 

a small number of ants between two and ten. In the 

proposed algorithm, after making the tour by the ants 

in a colony, Ant that has produced the best answer, 

update the pheromone on the possible arcs and 

increases the rate of pheromone. Once all the ants have 

terminated their ant solution construction procedure, a 

pheromone update phase is started in which pheromone 

trails are modified. Termination condition in the 

proposed algorithm is the number of iterations without 

improvements that is specified in parameters tuning 

section. The proposed ACO algorithm pseudocode is 

shown in Fig. 3. 

 

 
Fig. 3. Pseudo code for proposed ACO algorithm to 

find shortest Hamiltonian path 

 
4. Parameters Tuning 

In this section, DOE method, selecting standard 

problems and parameters tuning of the proposed 

algorithms are discussed. 

The parameters of the proposed algorithms are tuned 

using Design of Experiments (DOE) approach and 

Design-Expert statistical software [41]. We can define 

an experiment as a test or series of tests in which 

purposeful changes are made to the input variables of a 

process or system so that we may observe and identify 

the reasons for changes that may be observed in the 

output response. DOE refers to the process of planning 

the experiment so that appropriate data that can be 

analyzed by statistical methods will be collected, 

resulting in valid and objective conclusions [42]. 

The three basic principles of DOE are replication, 

randomization, and blocking. By replication, we mean 

a repetition of the basic experiment. Replication has 

two important properties. First, it allows the 

experimenter to obtain an estimate of the experimental 

error. Second, if the sample mean is used to estimate 

the effect of a factor in the experiment, replication 

permits the experimenter to obtain a more precise 

estimate of this effect. By randomization, we mean that 

both the allocation of the experimental material and the 

order in which the individual runs or trials of the 

experiment are to be performed are randomly 

determined. Randomization usually makes this 

assumption valid. Blocking is a design technique used 

to improve the precision with which comparisons 

Pseudocode for proposed Ant Colony Optimization algorithm 

Read data 

Find candidate list 

While (stopping criterion not met) 

    For each ant Do 

        Construct solution 

        Compute tour length 

        Local pheromone update 

        Global pheromone update 

        If (tourLength <  bestSoFarTourLength) Then  

            bestSoFarTourLength= tourLength 

        End If 

    End For  

End While 
Output bestSoFarTourLength 

End. 
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among the factors of interest are made. Often blocking 

is used to reduce or eliminate the variability 

transmitted from nuisance factors; that is, factors that 

may influence the experimental response but in which 

we are not directly interested [43].  

The important parameters in DOE approach are 

response variable, factor, level, treatment and effect. 

The response variable is the measured variable of 

interest. In the analysis of metaheuristics, the typically 

measures are the solution quality and solution time 

[44]. A factor is an independent variable manipulated 

in an experiment because it is thought to affect one or 

more of the response variables.  

The various values at which the factor is set are known 

as its levels. In metaheuristic performance analysis, the 

factors include both the metaheuristic tuning 

parameters and the most important problem 

characteristics [45]. A treatment is a specific 

combination of factor levels.  

The particular treatments will depend on the particular 

experiment design and on the ranges over which 

factors are varied. An effect is a change in the response 

variable due to a change in one or more factors [46] 

and [47]. Design of experiments is a tool that can be 

used to determine important parameters and 

interactions between them. Four-stages of DOE consist 

of screening and diagnosis of important factors, 

modeling, optimization and assessment. This 

methodology is called sequential experimentation 

which is used to set the parameters in the DOE 

approach and has been used in this paper for the 

proposed algorithms [43]. 

To adjust the parameters of the proposed algorithms, 

four standard problems from TSPLIB website has been 

used [48]. These problems based on the size and 

dimensions are classified into two groups. For each of 

problem groups, two blocks are considered. Problems 

ulysses22 and eil51 as first group block and problems 

gr202 and pcb442 as second group block are selected 

(Tab. 1). For each of two groups, parameters tuning has 

been done separately.  

 
Tab. 1. Standard problem for parameters tuning 

First group   Second group 

Problem Number of cities Distance type  Problem Number of cities Distance type 

ulysses22 22 Geographic  gr202 202 Geographic 

eil51 51 Euclidean  pcb442 442 Euclidean 

 
In the proposed SA algorithm, solution quality and 

CPU time are considered as the response variables. 

Factors and their levels are shown in Tab. 2. Each 

block is considered with 16 treatments and main 

effects. Fig. 4 shows the relationship among relative 

gap, initial temperature, and cooling rate parameters 

for the first group problems. The relative gap is derived 

from Eq. (1). In Tab. 3 the final parameters for solving 

problems of first and second groups are shown. These 

parameters are fixed to solve the test problems. 

 
     -   

   
 

best so far tour length optimal value
relative gap

optimal value
=

        (1) 

 

 
Fig. 4. The relationship of initial temperature, and 

cooling rate for the first group problem 

 
Tab. 3. Final values of parameters for the SA 

proposed algorithm 

 
In proposed ACO algorithm, the quality of solution and 

CPU time are selected as the response variables. 

Factors and their levels are shown in Tab. 4. Each 

block is considered with 64 treatments and main 

effects. Fig. 5 as an example, Shows the changes of 

relative gap, toward the changes of α and β parameters 

for the first group problems. In Tab. 5 the final 

parameters for solving problems of first and second 

groups are shown. These parameters to solve the final 

problems are fixed. 

 
Tab. 2. Level factorial design for SA proposed 

algorithm 

 First group Second group 

Factor 

 

Low  High 

 

Low  High 

initial temperature  8000  16000  8000  18000 

cooling function  Geometric  Linear  Geometric  Linear 

cooling rate  0.01  0.9999  0.01  0.9999 

final temperature  0.01  0.0001  0.01  0.0001 

candidate list rate  0.5  1  0.01  0.1 

Factor First group Second group 

initial temperature 15000 15000 

cooling function Geometric Geometric 

cooling rate 0.9999 0.9999 

final temperature 0.0001 0.0001 

candidate list rate 0.6 0.01 
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Tab. 4. level factorial design for ACO proposed algorithm 

 First group Second group 

Factor   Low  High   Low  High 

α  5  20  2  20 

β  5  25  5  25 

q0  0.01  0.5  0.7  1 

local evaporate  0.01  0.5  0.08  0.3 

global evaporate  0.01  0.5  0.08  0.3 

number of ants  10  50  15  30 

candidate list rate  0.01  1  0.01  0.05 

iteration number  100  500  300  500 

initial pheromone rate   1   3   1   2 

 

  
Fig. 5. Change of relative gap into α and β for the 

first group problem 

 
Tab. 5. Final values of factors for the ACO proposed 

algorithm 
Factor  First group Second group 

α  5 
 

3 

β  5  10 

q0  0.5  0.3 

local evaporate  0.01  0.3 

global evaporate  0.01  0.09 

number of ants  50  24 

candidate list rate  0.8  0.05 

iteration number  500  300 

initial pheromone rate  1  1.5 

5. The Performance Analysis of the Proposed 

Algorithms 
To evaluate the proposed algorithms, the standard 

problems with size of 16 to 1060 cities from TSPLIB 

website are used [48]. The global optimal solutions of 

these problems are available in this website and are 

used to analyze the performance of the proposed 

algorithms. According to direct relationship between 

CPU time and problem size, the selected problems are 

divided into two groups. The first group includes the 

problem with less than or equal 100 cities and the 

second group includes more than 100 cities. This 

classification is shown in Tab. 6. 

 
Tab. 6. Standard problems characteristics 

 
Each of the standard problems run ten times and the 

best solution, the worst solution, the average of 

solutions, the average of CPU time, the average of 

relative gaps, and the relative gap of the best solution 

are achieved. The java programming language is used 

to implement algorithms. The program was run on a 

personal with core2 CPU at 2.66 GHz, 4 Gigabytes of 

Ram, and operating under Microsoft windows vista. 

The computational results of the proposed SA 

algorithm for standard problems are shown in Tab. 7. 

These results are achieved from ten runs for each 

problem.  

The averages of relative gaps, CPU time, and the best 

solution relative gap are 10 percent, 22 seconds and 7 

percent, respectively. These values indicate that the 

proposed SA algorithm can has high accuracy and 

efficiency to solve problems with different dimensions: 

 
Tab. 7. Performance analysis of the proposed SA algorithm 

First 

group 
                                             Second group 

Problem 
Number of 

cities 
Distance type  Problem 

Number 

of cities 
Distance type

ulysses16 16 Geographic  a280 280 Euclidean

berlin52 52 Euclidean  gr666 666 Geographic

kroA100 100 Euclidean  pr1002 1002 Euclidean

rd100 100 Euclidean u1060 1060 Euclidean

Problem Global optima 
Average of tour 

length 

Average of 

relative gap 
CPU time (s) Worst solution Best solution 

Best solution 

relative gap 

ulysses16 6859 6859.000 0.000 0.45 6859.00 6859.00 0.0000 

berlin52 7542 7914.386 0.049 3.73 8148.42 7544.32 0.0003 

kroA100 21282 21923.690 0.030 11.23 22843.53 21356.24 0.0035 

rd100 7910 8277.029 0.046 13.64 8436.66 8095.00 0.0234 

a280 2579 2985.528 0.158 16.20 3078.69 2809.88 0.0895 

gr666 294358 339243.800 0.153 75.55 343562.00 334523.00 0.1364 

pr1002 259045 310376.770 0.198 27.07 315063.52 302859.00 0.1691 

u1060 224094 268281.650 0.197 31.81 279481.30 261370.80 0.1663 

Total average - - 0.104 22.46 - - 0.0736 
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Tab. 8. Performance analysis of  the ACO proposed algorithm 

 

The computational results for the ACO algorithm for 

standard problems are shown in Tab. 8. In this 

algorithm, the average of relative gap is 7 percent and 

CPU time is 50 seconds in Tab. 8. The results in this 

table show the efficiency and effectiveness of the ACO 

algorithm. After solving the standard problems with 

proposed algorithms, the average of relative gap, CPU 

time and best solution relative gap are shown in Tab. 9.  

Final results are visually compared on Fig. 6, Fig. 7 

and Fig. 8. According to the ten runs for each problem 

and calculate the total average, comparison is very 

accurate. Effectiveness and efficiency of the algorithms 

in solving various problems are evaluated by quality of 

solution and CPU time measures. In Tab. 9, the 

proposed algorithms are compared based on best 

solution relative gap, average of relative gap, and CPU 

time. The performance analysis of two proposed 

metaheuristic algorithms for solving the standard 

problems indicating three percent difference in the 

average of relative gaps and thirty seconds in CPU 

time. Difference in the best solution relative gap of the 

proposed algorithms is less than 2 percent. As in Fig. 6, 

Fig. 7 and Fig. 8 are shown, when the dimensions of 

the problem become larger, the relative gap and CPU 

time are increased. 
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Fig. 6. Comparison of the proposed algorithms in 

the best solution relative gap 
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Fig. 7. Comparison of the proposed algorithms in 

the average of relative gap 
 

Tab. 9. Comparison of the proposed algorithms 

  
Best solution relative 

gap 
 

Average of relative 

gap 
 CPU time (s) 

Problem SA  ACO SA  ACO SA  ACO 

ulysses16 
 

0.0000  0.0000 
 

0.000  0.000 
 

  0.45      0.98 

berlin52  0.0003  0.0003  0.049  0.005    3.73    11.09 

kroA100  0.0035  0.0018    0.03  0.009  11.23    40.62 

rd100  0.0234  0.0031  0.046  0.023  13.64    11.12 

a280  0.0895  0.0572  0.158  0.073    16.2      10.3 

gr666  0.1364  0.1189  0.153  0.125  75.55    57.14 

pr1002  0.1691  0.1364  0.198  0.152  27.07  127.14 

u1060 0.1663  0.1637 0.197  0.178 31.81  143.43 

Average 
 

0.0736  0.0602 
 

0.104  0.071 
 

22.46    50.23 
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Fig. 8. Comparison of the proposed algorithms in 

CPU time 

Problem 
Global 

optima 

Average of tour 

length 

Average of 

relative gap 
CPU time (s) 

Worst 

solution 
Best solution 

Best solution 

relative gap 

ulysses16 6859 6859.000 0.000 0.98 6859.00 6859.00 0.0000 

berlin52 7542 7578.786 0.005 11.09 7716.65 7544.32 0.0003 

kroA100 21282 21473.444 0.009 40.62 21709.46 21321.83 0.0018 

rd100 7910 8091.455 0.023 11.12 8268.31 7934.84 0.0031 

a280 2579 2766.750 0.073 10.30 2807.09 2726.45 0.0572 

gr666 294358 331268.600 0.125 57.14 334179.00 329362.00 0.1189 

pr1002 259045 298397.400 0.152 127.14 305836.53 294381.00 0.1364 

u1060 224094 263901.040 0.178 143.43 269804.99 260785.00 0.1637 

Total average - - 0.071 50.23 - - 0.0602 
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As Tab. 9 and Fig. 6 shown, ACO is better than SA 

algorithm in comparing with the best solution relative 

gap. With aspect of the average of relative gap, ACO 

algorithm has better performance. But in comparing 

with CPU time, the SA algorithm is better. For 

comparison of the proposed algorithms, Tab. 10 and 

Fig. 9 are drawn. In order to compare proposed 

algorithms and to normalize the different measures 

scales, we used Norm approach [49]. Tab. 10 is 

normalized by Norm method (Eq. 2). 
 

2

1

ij

ij
m

ij

i

a
a

a
=

′ =

∑

                                                              (2) 

 

Where 
ija′ is the unit less of the measure of 

ija in thj measure of the thi algorithm. 

 

Tab. 10. Comparison of the algorithms 

based on normalized value 

Algorithm SA ACO 
Total relative gap 6.559 4.478 

Best solution relative gap 8.141 6.659 

CPU time 0.007 0.017 
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Fig. 9. Comparison of the proposed algorithms 

 
6. Statistical Analysis 

 To evaluating experimental results, a statistical 

analysis is performed by using SPSS Statistics 17 

software. An assessment of the normality of data is a 

prerequisite for parametric statistical tests. We 

normalize dataset and use well-known test of 

normality, namely the Shapiro-Wilk test. Then we 

perform an analysis of variance (ANOVA) parametric 

statistical test. The null hypothesis tested by one-way 

ANOVA is that two or more population means are 

equal.  

The question is whether (H0) the population means 

may equal for all groups and that the observed 

differences in sample means are due to random 

sampling variation, or (H1) the observed differences 

between sample means are due to actual differences in 

the population means. 

The assumptions needed for ANOVA test are: (1) 

random, independent sampling from the k populations, 

(2) normal population distributions, and (3) equal 

variances within the k populations. Assumption 1 is 

crucial for any inferential statistic.  Assumptions 2 and 

3 can be relaxed when large samples are used, and 

Assumption 3 can be relaxed when the sample sizes are 

roughly the same for each group even for small 

samples [50, 51]. 

The significance level is 5 percent (α=0.05). The 

following hypothesis is tested: 

H0: The difference between SA and ACO is not 

significant (µGap SA = µGap ACO). 

H1: The difference is significant (µGap SA ≠ µGap ACO).  

 
Tab. 11. The output table of ANOVA test 

Source of variation 
Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Between Groups 0.037 1 0.037 4.854 0.03 

Within Groups 0.632 14 0.008   

Total 0.668 15    

 

Tab. 11. is the output table of SPSS Statistics software 

for ANOVA test. With a significance level of 5 

percent, the p-value for the test is 0.03 and p-value is 

less than significance level (0.03 < 0.05). At the 

α=0.05 level of significance, there is enough evidence 

to conclude that there is a significant difference in the 

gap of the SA and ACO algorithms.  

The experimental results show ACO algorithm 

performance is better than SA method. The results 

show the effectiveness of the proposed algorithms. 

 

7. Finding the Shortest Hamiltonian Path of 

Iranian Cities 
After solving test problems and evaluating the 

proposed SA and ACO algorithms, the shortest 

Hamiltonian path for 1071 cities is obtained. 

According to formal information, based on social-

economic characteristics, these are the main cities of 

Iran. For this purpose, latitude and longitude of the 

cities are extracted [52]. Fig. 10 is the two dimensional 

view of these cities. Then, this information is converted 

to appropriate format for the proposed algorithms. 

Longitude and latitudes are converted to geographical 

distances on the sphere with radius 6378/388 km and 

are stored on a matrix with dimensional 1071 × 1071. 

 
Tab. 12. The Hamiltonian path of the proposed 

algorithm for 1071 Iranian cities 

 
The proposed algorithms run ten times and the 

averages of path length, the best and worst path (per 

km), and the time of each run (per seconds) are 

Algorithm 
Average of path 

length (km) 

Average of CPU 

time (s) 

Worst 

path(km) 

Best 

path(km) 

SA 32906.9 45.76 33988 32233 

ACO 32755.2 205.89 33253 32039 
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extracted (Tab. 12). According to the number of cities, 

the proposed algorithms are implemented with 

parameters obtained for the second group problems in 

Tab. 3 and Tab. 5. These algorithms get distance 

matrix as input and output the best Hamiltonian path 

between 1071 cities. Fig. 11 and Fig. 12 display the 

best Hamiltonian path of the proposed SA and ACO 

algorithms, respectively. The relative superiority of the 

ACO algorithm to solve standard problems and to find 

the shortest Hamiltonian path for Iranian cities is 

evident. However, the SA algorithm has less CPU time 

than ACO algorithm. 

 
8. Conclusions 

In this paper, for the first time, two different 

metaheuristic algorithms, a single solution-based and 

a+ population solution-based algorithms, proposed to 

find shortest Hamiltonian path for 1071 Iranian cities, 

and the results are compared with each other. Standard 

problems were used to evaluate the performance of the 

proposed algorithms. To adjust the best parameter 

values in the proposed algorithms, DOE method was 

used to find the most appropriate parameters. The 

computational results showed slight difference in the 

quality of solution obtained from the proposed 

algorithms.  

The SA algorithm solutions in standard problems are 

obtained in less time than the ACO algorithm, but the 

statistical analysis shows that solutions obtained by 

ACO are better than SA algorithm. In addition, the 

quality of solution obtained by the ACO algorithm is 

better than SA algorithm to find the shortest 

Hamiltonian path for 1071 Iranian cities, but it takes 

more CPU time. 

For future researches, using other parameter tuning 

approaches such as dynamic and adaptive methods to 

achieve higher quality solutions and using statistical 

methods to evaluate the computational results of two 

metaheuristic algorithms are suggested. 
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Fig. 10. Two dimensional view of 1071 Iranian cities 
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Fig. 12. The best Hamiltonian path of the ACO algorithm for Iranian cities 
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Fig. 11. The best Hamiltonian path of the SA algorithm for Iranian cities 
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